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Abstract
The non-linear dynamics involved in sliding modes in an incommensurate
composite is studied in the double chain model. The coupling between the
chains leads to phonons in which the two chains participate in various ways.
For displacements beyond the harmonic approximation it is shown that, for a
coupling small enough to leave the modulation functions continuous, there is a
dynamic transition from a practically frictionless regime to a regime with strong
dissipation. In the cross-over region resonances lead to an oscillatory motion
of the subsystems with respect to each other. In the regime of discontinuous
modulation functions there is strong dissipation and a transition from a pinned
to an unpinned state. The unpinned motion is a non-linear wave in superspace.

1. Introduction

Aperiodic crystals may be described by embedding them into a higher-dimensional space
as lattice periodic structures. In this higher-dimensional space it is possible to have more
hydrodynamic degrees of freedom than just the dimensions of the physical space. In addition
to the acoustic modes there may be displacements in the additional space, corresponding to
so-called phason degrees of freedom. In contrast to the acoustic modes these extra modes,
generally, have non-negligible dissipative character. In general, these modes are overdamped.
For incommensurate composites, a special class of these aperiodic crystals, these modes are
called sliding modes and correspond to mutual displacements of the constitutive subsystems.
The damping of these sliding modes then can be considered as an internal friction.

We study this friction on a simple model, the double chain model (DCM) [1, 2]. It consists
of two parallel one-dimensional chains with anharmonic intra- and inter-chain coupling. If
the two chains are incommensurate, the coupling leads to incommensurate modulations of the
chains in the ground state. In the dynamics the coupling leads to interaction of the phonons in
the chains, changing the vibrational spectrum.

Beyond the harmonic approximation the dynamics is described by coupled phonons, but
also by non-linear excitations of the chains.
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The model may serve as well for the motion of two crystal structures with respect to each
other, i.e. to the friction between two mutually incommensurate contact surfaces. The model
used is a Hamiltonian system. Therefore, the energy is conserved. Dissipation here means that
energy in one mode, in particular the centre of mass motion, is distributed over other modes
where it forms the heat bath.

Friction between mutually incommensurate crystal surfaces has been studied mainly on
the Frenkel–Kontorova model. This model describes the motion of a crystalline chain on a
rigid periodic substrate. It was claimed that there is a regime without friction [3], but later
it has been shown that eventually friction becomes important [4]. In the present model the
substrate is also flexible: both subsystems are crystalline and have phonon excitations. These
become coupled which leads to a transfer of energy between the systems, and between the
centre of mass motion of one chain and the bath of phonons.

The paper first discusses the coupling of the phonons in the chains of the model in section 2.
In section 3 the embedding into a higher-dimensional space is explained, which leads to the
possibility of the sliding modes. In section 4 the non-linear effects leading to the onset of
friction for sliding modes is discussed.

2. Phonons in the model

As a model for an incommensurate composite we consider a DCM. It consists of two parallel
chains of particles. The positions of the particles in the first chain are denoted by xn, and in
the second chain by ym . The Hamiltonian is given by

H =
∑

n

p2
1n

2m1
+

∑
m

p2
2m

2m2
+

∑
n

V1(xn − xn−1) +
∑

m

V2(ym − ym−1) + λ
∑
nm

W (xn − ym).

(2.1)

Because the system is Hamiltonian, the energy is conserved. Furthermore, the Hamiltonian
is translation invariant, and hence there is conservation of total momentum, in contrast to the
Frenkel–Kontorova-type models.

For λ = 0 the phonons in the two chains are given by

xn = x0 + na + un = x0 + na +
∑

k

Q(1)
k exp(ikna)

ym = y0 + mb + vm = y0 + mb +
∑

k

Q(2)
k exp(ikmb),

where the normal coordinates Q( j)
k satisfy

Q̈(1)
k = −ω2

1k Q(1)
k

Q̈(2)
k = −ω2

2k Q(2)
k ,

with ω2
1k = 4α sin(ka/2)2 and ω2

2k = 4β sin(kb/2)2 if α and β are the second derivatives of
Vj in the equilibrium points divided by m j . The solutions are given by

Q( j)
k (t) =

{
Q( j)

k (0) exp(−iω jk t), if ω
( j)
k �= 0

Q( j)
k (0) + vt else.

If λ �= 0 the modes in both chains are coupled. The equations of motion become

m1ün = −α(2un − un−1 − un+1) − λ
∑

m

W ′(xn − ym)

m2v̈m = −β(2vm − vm−1 − vm+1) + λ
∑

n

W ′(xn − ym).
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The equations of motion for the normal coordinates, i.e. the Fourier components in the
approximation of small un and vm , become

Q̈(1)
k = −ω2

1k Q(1)
k − λ

∑
nm

W ′(xn − ym) exp(−ikna)/m1

Q̈(2)
k = −ω2

2k Q(2)
k + λ

∑
nm

W ′(xn − ym) exp(−ikmb)/m2.

For small displacements the interaction term may be expanded in powers of (un −vm). Because
the function f (x) = ∑

W ′(x − mb) is periodic in x with period b it has only Fourier
components belonging to the reciprocal lattice of the second chain. For similar reasons the
first terms in the expansion

∑
nm

W ′(xn − ym) exp(−ikna) =
∑
nm

∞∑
j=0

W ( j+1)(na − mb)(un − vm) j/j ! exp(−ikna)

satisfy the relations∑
nm

W ′(na − mb) exp(−ikna) =
∑
K2

FK2�(k − K2) (2.2)

∑
nm

W ′′(na − mb)un exp(−ikna) =
∑
K2

iK2 FK2 Q(1)

k−K2
(2.3)

∑
nm

W ′′(na − mb)vm exp(−ikna) =
∑
K2

iK2G K 2 Q(2)

k−K2
(2.4)

and the corresponding terms in the equations of motion for Q(2)
k satisfy similar equations. The

terms corresponding to equation (2.2) correspond to a shift of the origin of the vibrations. The
particles in chain 1 oscillate around new equilibrium positions corresponding to a modulation
of chain 1 with the period of chain 2, and vice versa. The terms corresponding to equation (2.3)
give a coupling of the phonons in chain 1 of wavevector k with other modes in the same chain,
with wavevector k + K2, where K2 belongs to the reciprocal lattice of chain 2. In agreement
with the mechanism described by Axe [5] for incommensurate phases this coupling between
modes ±2π/b gives rise to the phason branches. The third case, that of the terms corresponding
to equation (2.4), gives coupling between the modes in different chains. This coupling is strong
if the coupled modes have the same frequency and the same wavevector, modulo the Fourier
module spanned by 2π/a and 2π/b. In an extended zone scheme these cases correspond to
crossings of the dispersion curves of both lattices (figure 1, which for reasons of clarity does
not correspond to the calculated modes used for figure 2).

For λ = 0 the phonons are concentrated on either of the two chains. By the coupling,
phonons may have lattice displacements in both chains. A measure for the participation of
one of the chains is the participation function Pj ( j = 1, 2). In calculations the chains are
considered in a commensurate approximation. This means that there are integers N and L such
that Na = Lb. The number of particles in the unit cell is L + N . We consider eigenvectors of
the mode with wavevector k and label ν: ε(kν| j) with normalization

L+N∑
j=1

|ε(kν| j)|2 = 1. (2.5)

Then the participation functions are defined as

P1 =
N∑

j=1

|ε(kν| j)|2 = 1 − P2. (2.6)
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Figure 1. Schematic view of the intersection of the dispersion curves of the non-interacting chains.

Figure 2. Participation of chain one in the vibration modes of the coupled system.

The value of Pi is between 0 and 1. A value of 0 or 1 means complete concentration on one
of the chains. In figure 2 the participation function P1 is plotted for modes in a commensurate
approximant of the DCM. For most of the modes the participation is either 0 or 1. These
modes belong to one of the chains. The modes with participation of intermediate value occur
for modes near the gaps in the spectrum. They correspond to the values of ω and k where the
dispersion curves of the two uncoupled chains cross.

In addition to these coupled modes near crossings there are two branches of coupled
modes at low frequency. They correspond to the acoustic modes and the phason modes. The
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calculation shows that there are such collective modes in which both chains participate. For a
purely acoustic mode at zero frequency all the components ε(0ν| j) are equal for all j . This
implies that ε(0ν| j) = (L + N)−1/2, and consequently

P1 = N

L + N
, P2 = L

L + N
. (2.7)

If the interaction λ is small enough, the modulation function is smooth and there is a second
zero-frequency mode, the sliding mode. The phonon displacements are proportional to the
derivative of the modulation function. For a sinusoidal modulation the result is

ε(0ν| j) =
√

2L

N(N + L)
j = 1, N (2.8)

ε(0ν| j) = −
√

2N

L(L + N)
j = N + 1, N + L . (2.9)

The corresponding participation values are P1 = L/(L + N), P2 = N/(L + N). In
figure 2 the curves do not tend to these values. The reason is that for degenerate modes the
participation function is undetermined, because it depends on the ratio of the two degenerate
components. Every linear combination of eigenvectors at frequency zero is an eigenvector,
and the participation function may reach any value. The numerical procedure gives specific
eigenvectors, but they are not unique.

The fact that the participation depends on the frequency is, of course, well known. For the
diatomic linear chain with masses m1 and m2, P1 (for particle A) depends on k according to

x = α(1 + exp(2ika)), y = 2α − m2ω
2
k , P1 = |x |2/(|x |2 + |y|2).

ω2
k = α

µ

(
1 ±

√
1 − 4µ sin (ka)2

m1 + m2

)
, µ−1 = m−1

1 + m−1
2

and runs from 0.5 at the zone centre to 0 or 1 at the zone boundary (see figure 3). The difference
is that here the modes near the gap are concentrated on one subsystem, and not mixed, whereas
in the DCM precisely the modes near gaps are mixed.

3. Embedding

As in every quasiperiodic system the incommensurate double chain may be embedded as a
periodic structure in a higher-dimensional space. The equilibrium positions of the particles
are given by

xn = x0 + na + f (x0 + na), ym = y0 + mb + g(y0 + mb), (3.1)

where the modulation functions f and g are periodic according to the previous section:

f (x + b) = f (x), g(y + a) = g(y). (3.2)

For sufficiently small interaction parameter λ the modulation functions are smooth. For
larger values of λ the modulation functions become discontinuous. This is called the
discommensuration transition or the transition by breaking of analyticity [3, 6].

The one-dimensional aperiodic structure may be embedded in two dimensions according
to

(na + f (na − Z), Z), (Z + mb + g(Z + mb), Z), (3.3)
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Figure 3. Participation of subsystem A in the diatomic harmonic chain.

where Z is the second coordinate. The array of lines (Z is a real parameter) is invariant under
translations (a, a) and (0, b):

(na + a + f (na − Z), Z + a) = (n′a + f (n′a − Z ′), Z ′)
(Z + a + mb + g(Z + mb), Z + a) = (Z ′ + mb + g(Z ′ + mb), Z ′)
(na + f (na − Z), Z + b) = (na + f (na − Z ′), Z ′)
(Z + mb + g(Z + mb), Z + b) = (Z ′ + m ′b + g(Z ′ + m ′b), Z ′).

The internal variable Z gives, at the same time, the position of the centre of mass of chain 2
with respect to chain 1. Then a sliding mode corresponds to the shift Z → Z +ε for some small
displacement ε. It has been found that the sliding mode has zero frequency if the modulation
functions are smooth, but that there is a phason gap in the discontinuous regime [3, 6].

An alternative embedding (figure 4) keeps the total centre of mass unchanged under shifts
in Z . Choose parameters t1 and t2 with t1 + t2 = 1 and t1/t2 = am2/bm1 and embed the system
according to

(−t1(na + f (na − Z)) + t2 Z , Z), (−t1(Z + mb + g(Z + mb)) + t2 Z , Z). (3.4)

A shift in Z does not change the centre of gravity of the whole system, and the embedding
is invariant under a lattice in two dimensions spanned by (t1b, b) and (−t2a, a). Changing Z
causes a relative displacement of the two chains with respect to each other. In the following
section we shall study the dynamics connected with this shift.

4. Non-linear dynamics and friction

The vibrations around the equilibrium positions considered in the preceding sections,described
in terms of phonons, are harmonic. The harmonic approximation is valid only for small
displacements. For larger displacements the equations become non-linear. They are

m1 ẍn = −V ′
1(xn − xn−1) − V ′

1(xn − xn+1) − λ
∑

m

W ′(xn − ym) (4.1)

m2 ÿm = −V ′
2(ym − ym−1) − V ′

2(ym − ym+1) + λ
∑

n

W ′(xn − ym). (4.2)
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Figure 4. Alternative embeddings of the double chain. For the second, a shift in internal space
keeps the centre of mass fixed.

We suppose that the displacements un and vm remain small in the moving frame:

V ′
1(xn − xn−1) + V ′

1(xn − xn+1) = α(2un − un−1 − un+1)

and a similar expression for V ′
2. The phonons then are non-linearly coupled by the W terms.

The solutions xm(t) and ym(t) determine also the motion of the centre of mass and the
motion of the internal coordinate Z . The latter is determined by

t2 Z = 1

L

∑
m

ym →

Z̈ = 1

Lt2

∑
m

ÿm = − β

Lt2

∑
m

(2ym − ym−1 − ym+1) +
λ

Lt2

∑
nm

W ′(xn − ym).

(4.3)

The relative motion of the two chains may be described as a motion in internal space.
The change in the internal coordinate Z is obtained from the two displacive modes in the

two chains:

Q(1)

0 = 1

N

∑
n

un, Q(2)

0 = vt +
1

L

∑
m

vm . (4.4)

The equations of motion for these variables are

Q̈(1)

0 = − λ

m1

∑
nm

W ′(xn − ym)

Q̈(2)

0 = λ

m2

∑
nm

W ′(xn − ym).

(4.5)

The right-hand sides can be developed in powers of the normal coordinates Q( j)
k according to∑

nm

W ′(xn − ym) =
∑
nm

∑
j

1

j !
W ( j+1)(na − vt − mb)(un − vm) j . (4.6)

The first-order terms are given by∑
nm

W ′′(na − vt − mb)un =
∑
K2s

f̂K2s Q(1)
K2

exp(−is	1t)

∑
nm

W ′′(na − vt − mb)vm =
∑
K1s

ĝK1s Q(2)
K1

exp(−is	2t)

where K1 is a multiple of 2π/a, K2 is a multiple of 2π/b, 	1 = 2πv/b and 	2 = 2πv/a. The
latter frequencies correspond to the frequencies with which the particles of one chain move
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over the particles of the other chain. Furthermore, f̂ks and ĝks are the Fourier transforms of∑
m W ′(na − vt − mb) and

∑
n W ′(na − vt − mb), respectively.

By the expressions in terms of the normal coordinates the modes with wavevector k in
chain one are coupled to modes at k + K2 in the same chain, and to modes at k + K1 in the
other chain, and vice versa. The centre of mass motions are in first approximation coupled to
modes with wavevectors in one of the two reciprocal lattices. Then the equations of motion
become

Q̈(1)
0 = − λ

m1

[∑
K2

f̂K21 Q(1)
K2

exp(−i	1t) +
∑
K 1

ĝK11 Q(2)
K1

exp(−i	2t)

]

Q̈(2)

0 = λ

m2

[∑
K2

f̂K21 Q(1)
K2

exp(−i	1t) +
∑
K 1

ĝK11 Q(2)
K1

exp(−i	2t)

]

Q̈1
K2

= −ω1K2 Q(1)
K2

Q̈2
K1

= −ω2K1 Q(2)
K1

.

The solutions give for the change in the internal coordinate

Z1 − Z2 ≈ vt + A exp(−i	1t ± iω1K2 t) + B exp(−i	2t ± iω2K1 t). (4.7)

The result is a quasiperiodic oscillation of the internal coordinate around a mean value v.
Through coupling to other modes energy flows from this centre of mass motion to the phonon
bath. The flow is most important in the regions where one of the frequencies s	i becomes
equal to a frequency ω1K2 or ω2K1 . The effect is even more pronounced at frequencies where
the participation of the chains is comparable in size (i.e. approximately 0.5).

The analysis given above may be illustrated by numerical calculations. This allows us to
explore the region that is not accessible to analytical treatment. We consider the DCM with
truncated Lennard-Jones potentials:

Vi (x) = ((ai/x)12 − 2(ai/x)6) exp(−r x2).

Chain lengths up to N = 89 and L = 144 were considered, with periodic boundary conditions.
The equations of motion were integrated with a four-step Runge–Kutta procedure. For various
values of the lengths L and N the equations were integrated with the equilibrium positions as
positional initial conditions, zero velocity for the particles of chain one, and a uniform initial
velocity of the particles of chain two. The monitored properties were the momenta of the two
chains and their kinetic energies as a function of time.

In the first simulations the inter-chain coupling was taken to be so small that the modulation
functions were smooth. In figure 5 the momentum of chain two is plotted as a function of
time for a number of initial velocities. For momentum smaller than a critical value v = 1.1
it remains practically constant for a very long time. For v ≈ 0.65 the coupling becomes
stronger, the energy is lost faster and there are stronger oscillations due to the resonance of
	1 and ω1K2 . The resonance disappears for higher values of v. Above the critical value
the energy loss is much stronger. There is no longer a sliding mode. If the relative motion
vanishes the momentum of the second chain goes to L/(L + N) of its original value because
of conservation of total momentum. Figure 6 shows the kinetic energy in both chains as a
function of time, when there is a strong dissipation (v = 1.5). Chain 2 quickly loses its kinetic
energy to chain 1, until the point that the energy is evenly distributed over the modes of both
chains. The cross-over from almost dissipationless to strong dissipative behaviour is very
similar to that in the Frenkel–Kontorova model for weak coupling [4]. The calculations show
that, for low velocities, the energy loss, and therefore also the damping of harmonic modes, is
very small. In experiments the phason and sliding modes have been found usually as strongly
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Figure 5. Momentum of the second chain as a function of time for initial velocities from 0.5
(lowest curve) up to 2.0 (highest curve) with intervals equal to 0.05.

Figure 6. The kinetic energies of the chains as a function of time for the relative initial speed
v = 1.5. The systems tends to the equilibrated state.

damped. This would then be not an intrinsic property of the dynamics of incommensurate
phases, but probably due to other effects, such as the coupling to defects and pinning. In [7]
the dynamics of incommensurate phases has been studied with a phenomenological approach
to the damping.

When the coupling between the chains becomes stronger the modulation functions are
no longer continuous, and the analysis in terms of normal coordinates of the two chains is
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Figure 7. The relative speed of the two chains as a function of time, for an inter-chain coupling
large enough to give a discontinuous modulation function. The initial speed is small and the motion
is pinned.

no longer valid. The two chains are still mutually incommensurate, which means that the
ground state remains infinitely degenerate. However, in this case there are barriers between
the various ground states involving finite jumps of the particles. Therefore, the displacements
are no longer harmonic. A numerical integration of the equations of motion gives another
cross-over behaviour. For low relative momenta the kinetic energy is not sufficient to cause
the particles to move over the barriers. Then the kinetic energy is exchanged between the two
subsystems and the centre of mass oscillates (figure 7). For higher momenta the two chains
may slide over each other, and the kinetic energy is quickly transferred to the phonon degrees of
freedom (figure 8). The transfer of energy between the two chains for the pinned and unpinned
cases is illustrated in figure 9. The initial velocity v = 2.0 is below the critical value, whereas
v = 3.3 is above it.

5. Concluding remarks

The coupling in the DCM, a model for incommensurate composites or the dynamics of
contacting surfaces, leads to a mutual modulation of the two chains and to a renormalization
of the phonons. For small inter-chain interactions the modulation is smooth, but for stronger
interactions the modulation functions become discontinuous. In the smooth regime there
are vibrational excitations concentrated on one of the two chains, but near gaps and for low
frequency there are modes with a comparable contribution of both chains. For low frequencies
two branches appear in which both chains participate, one with the character of acoustic waves,
the other with a phason-like character. The latter branch has no gap when the modulation is
smooth, and the excitations have a displacement component in the internal space. For larger
inter-chain interaction the modulation functions are discontinuous and a phason gap opens up.
The static friction coefficient is zero when the phason gap is closed, and becomes non-zero
when the phason gap opens.
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Figure 8. The momentum of the second chain as a function of time, for an inter-chain coupling
large enough to give a discontinuous modulation function. The initial speed is high and the motion
unpinned. The final momentum corresponds to zero velocity in internal space (no relative speed).

Figure 9. The kinetic energies for both chains in the discontinuous regime for speeds v = 2.0
and 3.3. Full curves: chain 1, broken curves: chain 2.

In the continuous regime the amplitudes of the phason may become large. There is a
cross-over from a regime at low sliding speeds where the sliding mode interacts only weakly
with the phonons to a regime where the kinetic energy of the sliding mode is quickly lost to
phonon excitations. In the low speed limit the dissipation, i.e. the energy transfer to phonons,
is low, but non-zero. In terms of friction this is the pseudo-superlubric state with a very low
dynamic friction coefficient. Resonances between the beat frequencies of the sliding mode
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and the phonon frequencies give rise to a higher dissipation for special values of the sliding
velocity. The transition from an (almost) dissipationless motion to strong dissipation has been
found also in the dynamics of incommensurate modulated phases. In the discrete frustrated φ4

(DIFFOUR) model the non-linear solitary wave becomes unstable for increasing velocities [8].
Observations of low friction in such situations have been reported by Hirano et al [9] in STM
experiments.

For a strong inter-chain interaction, when the modulation is discontinuous, there is a
transition from a pinned state to an unpinned state for increasing sliding velocities. In the high
speed regime the dissipation increases strongly.

The present very simple model for the dynamics of incommensurate composites in physical
and internal space neglects a number of important features, such as the influence of temperature
and defects. Moreover, increasing the dimension may introduce new phenomena.
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